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Abstract
We present an effective practical approach for solving multi-order nonlinear fractional dif-
ferential equations. Our method uses integrated Bernoulli polynomials and comes with a
comprehensive convergence analysis. The integrated Bernoulli polynomials are combined
with the collocation and simple iteration methods to approximate the solutions. We have pro-
vided several numerical examples to demonstrate the effectiveness, strength, and flexibility
of our method. The results obtained from implementing the method have been compared
with exact solutions and results obtained from other methods mentioned in the articles.

Keywords Multi-order nonlinear fractional differential equation · Integrated Bernoulli
polynomials · Iterative method · Convergence analysis

Mathematics Subject Classification 65J15 · 26A33 · 34L30 · 33F05 · 41A10

1 Introduction

Over the past few decades, there has been significant research into fractional order differential
equations due to their effectiveness in describing various real-world problems.When it comes
to complex phenomena in different scientific fields, fractional calculus, and fractional order
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derivatives offer amore accurate description than integer order derivatives. This is particularly
true when dealingwithmemory effects. Fractional differential equations are utilized tomodel
practical problems in various fields. As an example, refer to (Prakash et al. 2017; Chen
et al. 2022; Shi et al. 2022; Alqhtani et al. 2022; Odibat and Baleanu 2022), as well as
the references mentioned therein. Researchers have presented several numerical methods
for solving fractional differential equations (Bakhshandeh-Chamazkoti and Alipour 2022;
Alipour and Agahi 2018; Azarnavid et al. 2022; Rezabeyk et al. 2023; Khodabandelo et al.
2022; Eftekhari and Rashidinia 2023). On the other hand, there is a significant category of
fractional differential equations that involve various orders of fractional derivatives of the
desired function. These types of equations are called multi-term or multi-order fractional
differential equations. They have appeared in various fields, such as mechanics Joujehi et al.
(2022), chemical reactor theory Erturk et al. (2022), and visco-elastic damping Dadkhah
et al. (2020). It is often impossible to determine the analytical solutions for multi-order
problems. Hence, we require robust numerical methods to solve them accurately. Researchers
have offered several methods and techniques to address this particular set of problems. For
example, refer to the Amin et al. (2022), Abd-Elhameed and Alsuyuti (2023), Nagy (2022)
and the related references mentioned in them.

This paper studies the following general form of nonlinear multi-order fractional initial
value problems:{

∂αu(t) − G(t, u(t), ∂β1u(t), ∂β2u(t), ..., ∂βm u(t)) = 0, t ∈ [0, 1],
di u(t)

dti |t=0 = ui , i = 0, ..., z − 1, z ∈ N ,
(1)

where α ∈ (z − 1, z], α > βm > ... > β1 > 0, G has enough smoothness to guarantee
the existence and uniqueness of the solution and all derivatives are in Caputo sense. Several
research works, such as (Verma and Kumar 2022; Diethelm and Ford 2004; Diethelm 2010),
have investigated the existence and uniqueness of the solution of these classes of equations.
As far as we know, in comparison to other types of fractional equations, few articles have
dealt with their numerical simulation. Therefore, we have been interested in providing a
practical and efficient numerical method to solve such problems.

As we know, in recent years, methods based on Bernoulli polynomials have been used
to solve different differential equations (Bhrawy et al. 2012; Azarnavid 2023; Postavaru and
Toma 2022; Postavaru 2022). Bernoulli polynomials have advantages over some classical
orthogonal polynomials for approximating an arbitrary unknown function. Some of them
are mentioned in Bhrawy et al. (2012). Here, we propose a vigorous method based on the
integratedBernoulli polynomials combinedwith the collocation and simple iterationmethods
to approximate the solutions. As far as we have checked, this is the first try at utilizing
integrated Bernoulli polynomials for differential equations. We have also given a rigorous
convergence analysis of the proposed iterativemethod for nonlinear problems. Finally, several
numerical examples of the implementation of the method and comparisons are presented to
test the method’s efficiency, power, and versatility.

2 Basic definitions and theorems

This section will present the definitions, theorems, and results regarding fractional calcula-
tions and Bernoulli polynomials.

Definition 2.1 For any t > 0, the Riemann–Liouville fractional integral operator and
Caputo’s fractional derivative operator of arbitrary order α > 0 for a function H can be
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defined as follows, respectively:

J αH(t) = 1

�(α)

∫ t

0
(t − s)α−1H(s)ds, (2)

and

∂αH(t) = 1

�(z − α)

∫ t

0
(t − s)z−α−1H(z)(s)ds, z − 1 < α ≤ z, z ∈ N . (3)

For α > 0, β > 0, z − 1 < α ≤ z, z ∈ N and t > 0, they have the following properties
Diethelm (2010):

J αJ βH(t) = J α+βH(t),
J αtγ = �(γ+1)

�(γ+α+1) tγ+α, γ > −1,
∂αJ αH(t) = H(t),

J α∂αH(t) = H(t) −
z−1∑
j=0

H( j)(0) t j

j ! ,

∂αtγ = 0, γ = 0, 1, ..., z − 1,
∂αtγ = �(γ+1)

�(γ+1−z) tγ−α, γ ∈ N and γ ≥ z or γ /∈ N and γ > z − 1.

(4)

Bernoulli polynomials have applications in mathematical analysis, number theory, and
other fields of mathematics. Bernoulli polynomials have recently attracted the attention of
researchers for their applications in the field of numerical methods. In the following, we intro-
duce Bernoulli polynomials and some of their properties. We also refer to Lehmer (1988);
Napoli (2016) for more details and proofs.

Definition 2.2 We can obtain the Bernoulli polynomials Bn(t), n = 0, 1, 2, ... using the
following expansion Lehmer (1988):

n∑
k=0

(
n +1

k

)
Bk(t) = (n + 1)tn . (5)

Lemma 2.3 We can obtain the Riemann–Liouville fractional integral of the Bernoulli poly-
nomials Bn(t) of arbitrary order α > 0 by using the following expansion:

n∑
k=0

(
n +1

k

)
J αBk(t) = (n + 1)!

�(n + α + 1)
tn+α, n = 0, 1, 2, ... . (6)

Proof Using (4) and (5), the proof is straightforward. ��
Bernoulli polynomials and applications of the Riemann–Liouville fractional integral on them
can be easily obtained with the help of (5) and (6).

Another way to obtain Bernoulli polynomials is to use their explicit form which is given
in Lehmer (1988) as follows:

Bn(t) = �n
k=0

(
n
k

)
Bn−k tk, (7)

where Bn are the Bernoulli numbers. The explicit form of the Bernoulli numbers are given
in Gould (1972) as

Bn = �n
k=0

1

k + 1

k∑
j=0

(−1) j
(

k
j

)
jn, n = 1, 2, ..., (8)
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where B0 = 1. Hence, by utilizing (4) and (7), it is possible to compute the explicit expression
for theRiemann–Liouville fractional integral of theBernoulli polynomialsBn(t) of any order
α > 0 in the following manner:

J αBn(t) =
n∑

k=0

(
n
k

)
Bn−k

�(k + 1)

�(k + α + 1)
tk+α. (9)

3 Numerical method

In this section, we present the numerical method of solving equation (1) using Bernoulli
polynomials.

In the first step, the following successive iterative scheme is used to deal with the nonlin-
earity of the problem (1):

{
∂αun(t) = G(t, un−1(t), ∂β1un−1(t), ∂β2un−1(t), ..., ∂βm un−1(t)), 0 ≤ t ≤ 1,
un (i)(0) = ui , i = 0, 1, 2, ..., z − 1.

(10)

The convergence of this iterative scheme will be investigated in the next section. Now, let α
be the highest order of the derivative of the unknown function in the problem and �α� be the
smallest integer greater than or equal to α. We consider the approximation of the derivative
of the unknown function of order �α� using Bernoulli polynomials as follows

∂�α�un
N (t) =

N∑
j=0

cn
jB j (t). (11)

Then, applying the operatorJ �α� to both sides of (11) and using (4) and the initial conditions
given in (10) we have

un
N (t) =

N∑
j=0

cn
jJ �α�B j (t) +

�α�−1∑
k=0

uk
tk

k! . (12)

Then we have

∂αun
N (t) =

N∑
j=0

cn
jJ �α�−αB j (t), (13)

and for any βi , i = 1, ..., m we have

∂βi un
N (t) =

N∑
j=0

cn
jJ �α�−βi B j (t) +

�α�−1∑
k=�βi �

uk
tk−βi

�(−βi + k + 1)
. (14)
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Now substitution (12), (13) and (14) in (10) gives

N∑
j=0

cn
jJ �α�−αB j (t) 	 G

(
t,

N∑
j=0

cn−1
j J �α�B j (t) +

�α�−1∑
k=0

uk
tk

k! ,

N∑
j=0

cn−1
j J �α�−β1B j (t) +

�α�−1∑
k=�β1�

uk
tk−β1

�(−β1+k+1) ,

N∑
j=0

cn−1
j J �α�−β2B j (t) +

�α�−1∑
k=�β2�

uk
tk−β2

�(−β2+k+1) , ...,

N∑
j=0

cn−1
j J �α�−βmB j (t) +

�α�−1∑
k=�βm�

uk
tk−βm

�(−βm+k+1)

)
.

(15)

Here, we consider the following shifted Chebyshev points on [0, 1] as collocation points:

ti = 1 + cos(iπ/N )

2
, i = 0, 1, ..., N . (16)

We want to determine the unknown coefficients such that in (15), the equality is satisfied at
the collocation points. Therefore, in each iteration, we determine the unknown coefficients
cn = (cn

0 , cn
1 , ..., cn

N )T using the following collocation scheme:

N∑
j=0

cn
jJ �α�−αB j (ti ) = G

(
ti ,

N∑
j=0

cn−1
j J �α�B j (ti ) +

�α�−1∑
k=0

uk
tk
i
k! ,

N∑
j=0

cn−1
j J �α�−β1B j (ti ) +

�α�−1∑
k=�β1�

uk
t
k−β1
i

�(−β1+k+1) ,

N∑
j=0

cn−1
j J �α�−β2B j (ti ) +

�α�−1∑
k=�β2�

uk
t
k−β2
i

�(−β2+k+1) , ...,

N∑
j=0

cn−1
j J �α�−βmB j (ti ) +

�α�−1∑
k=�βm�

uk
tk−βm
i

�(−βm+k+1)

)
,

(17)

for i = 0, 1, ..., N .
Let c0 = (c00, c01, ..., c0N )T be an initial guess. At last, to find the values of the unknown

coefficients cn = (cn
0 , cn

1 , ..., cn
N )T , we must solve a system of linear equations in each

iteration:

Bcn = Gn−1, (18)

123



   68 Page 6 of 17 B. Azarnavid et al.

where thematrixB has the entriesbi, j = J �α�−αB j (ti ) andGn−1=
(

Gn−1
0 , Gn−1

1 , ..., Gn−1
N

)T

where

Gn−1
i = G

(
ti ,

N∑
j=0

cn−1
j J �α�B j (ti ) +

�α�−1∑
k=0

uk
tk
i
k! ,

N∑
j=0

cn−1
j J �α�−β1B j (ti ) +

�α�−1∑
k=�β1�

uk
t
k−β1
i

�(−β1+k+1) ,

N∑
j=0

cn−1
j J �α�−β2B j (ti ) +

�α�−1∑
k=�β2�

uk
t
k−β2
i

�(−β2+k+1) , ...,

N∑
j=0

cn−1
j J �α�−βmB j (ti ) +

�α�−1∑
k=�βm�

uk
tk−βm
i

�(−βm+k+1)

)
.

(19)

4 Convergence analysis

This section will thoroughly analyze the convergence of the proposedmethod under specified
conditions. According to Chapter 3 of Gil et al. (2007), we have the following lemma.

Lemma 4.1 Let WN be the polynomial interpolant of the function W ∈ C N+1[0, 1] corre-
sponds to the N + 1 shifted Chebyshev points (16). Then we have:

‖W − WN ‖∞ ≤ 1

22N+1(N + 1)! ‖W‖∞. (20)

Lemma 4.2 For α > β ≥ 0, t > 0 and a functionHwithH(i)(0) = 0, i = 0, 1, 2, ..., �α�−1
we have

|∂βH(t)| ≤ J α−β |∂αH(t)|. (21)

Proof From (4) and the given conditions, we have

∂βH(t) = ∂β(J α∂αH(t)) = ∂βJ βJ α−β∂αH(t) = J α−β∂αH(t). (22)

The result is obtained by taking the absolute value of both sides. ��

Theorem 4.3 Assume that the function G fulfills the following generalized Lipschitz condi-
tion:

|G(t, u0, u1, ..., um) − G(t, v0, v1, ..., vm)| ≤ L0|u0 − v0| + L1|u1 − v1| + ...

+Lm |um − vm |, (23)

with L j ≥ 0, j = 0, 1, ..., m. Let u be the exact solution of (1). Furthermore, assume
that un+1

N be the approximated solution achieved through the suggested approach using the

starting guess c0 = 0. Then un+1
N converges to u when n and N tend to infinity.
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Proof For any t ∈ [0, 1] from (1) we have

|∂αu(t) − ∂αun
N (t)| = |G(t, u(t), ∂β1u(t), ..., ∂βm u(t)) − ∂αun

N (t)|
= |G(t, u(t), ∂β1u(t), ..., ∂βm u(t))

−G(t, un−1
N (t), ∂β1un−1

N (t), ..., ∂βm un−1
N (t))|

+G(t, un−1
N (t), ∂β1un−1

N (t), ..., ∂βm un−1
N (t)) − ∂αun

N (t)|
= |G(t, u(t), ∂β1u(t), ..., ∂βm u(t))

−G(t, un−1
N (t), ∂β1un−1

N (t), ..., ∂βm un−1
N (t))|

+|∂αun
N (t) − G(t, un−1

N (t), ∂β1un−1
N (t), ..., ∂βm un−1

N (t))|.

Let hn(t) = G(t, un−1
N (t), ∂β1un−1

N (t), ∂β2un−1
N (t), ..., ∂βm un−1

N (t)). According to (13) and
(17), the last term on the right-hand side of the above inequality is the interpolation error
of the function hn at the collocation points (16), which will be denoted by En,N (t) in the
following. Then, from Lemma 4.2 and the generalized Lipschitz condition we have

|∂αu(t) − ∂αun
N (t)| ≤ L0|u(t) − un−1

N (t)| + L1|∂β1(u(t) − un−1
N (t))| +

... + Lm |∂βm (u(t) − un−1
N (t))| + En,N (t)

=
m∑

j=0

L j |∂β j (u − un−1
N )| + En,N (t)

≤
m∑

j=0

L jJ α−β j |∂α(u − un−1
N )| + En,N (t)

≤
m∑

j1=0

L j1J α−β j1

⎛
⎝ m∑

j2=0

L j2J α−β j2 |∂α(u − un−2
N )| + En−1,N (t)

⎞
⎠

+En,N (t)

≤ L2
m∑

j1=0

m∑
j2=0

J
2α−

2∑
k=1

β jk |∂α(u − un−2
N )|

+En,N (t) + L
m∑

j1=0

J α−β j1 En−1,N (t)

≤ L3
m∑

j1=0

m∑
j2=0

m∑
j3=0

J
3α−

3∑
k=1

β jk |∂α(u − un−3
N )|

+En,N (t) + L
m∑

j1=0

J α−β j1 En−1,N (t)

+L2
m∑

j1=0

m∑
j2=0

J
2α−

2∑
k=1

β jk
En−2,N (t)

...

≤ Ln
m∑

j1=0

m∑
j2=0

...

m∑
jn=0

J
nα−

n∑
k=1

β jk |∂α(u − u0
N )|
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+En,N (t) + L
m∑

j1=0

J α−β j1 En−1,N (t)

+L2
m∑

j1=0

m∑
j2=0

J
2α−

2∑
k=1

β jk
En−2,N (t) + ...

+Ln−1
m∑

j1=0

m∑
j2=0

...

m∑
jn−1=0

J
(n−1)α−

n−1∑
k=1

β jk
E1,N (t)

≤ Ln‖∂αu‖∞
m∑

j1=0

m∑
j2=0

...

m∑
jn=0

t

(
nα−

n∑
k=1

β jk

)

�

(
nα −

n∑
k=1

β jk + 1

)

+EN

(
1 + L

m∑
j1=0

tα−β j1

�(α − β j1 + 1)

+L2
m∑

j1=0

m∑
j2=0

t
2α−

2∑
k=1

β jk

�(2α −
2∑

k=1
β jk + 1)

+ ...

+Ln−1
m∑

j1=0

m∑
j2=0

...

m∑
jn−1=0

t
(n−1)α−

n−1∑
k=1

β jk

�((n − 1)α −
n−1∑
k=1

β jk + 1)

)

≤ (L(m + 1))n‖∂αu‖∞
1

� (n(α − β) + 1)

+EN

(
1 + L(m + 1)

1

�(α − β + 1)

+(L(m + 1))2
1

�(2(α − β) + 1)
+ ...

+(L(m + 1))n−1 1

�((n − 1)(α − β) + 1)

)

≤ (L(m + 1))n‖∂αu‖∞
1

� (n(α − β) + 1)

+EN

∞∑
k=0

(L(m + 1))k

�(k(α − β) + 1)

= (L(m + 1))n

� (n(α − β) + 1)
‖∂αu‖∞ + ENEα−β(L(m + 1)),

where β0 = 0, β = max0≤ j≤m β j , EN = max1≤ j≤n ‖E j,N ‖∞, L = max0≤ j≤m L j and
Eα−β(t) is the one parameter Mittag-Leffler function. From Lemma 4.1 and Lemma 4.2 we
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can see that

|u(t) − un
N (t)| ≤ J α|∂α(u(t) − un

N (t))|
≤ J α

(
(L(m+1))n

�(n(α−β)+1)‖∂αu‖∞ + 1
22N+1(N+1)!C

)
≤ 1

�(α+1)

(
(L(m+1))n

�(n(α−β)+1)‖∂αu‖∞ + 1
22N+1(N+1)!C

)
,

which shows the convergence of the proposed method as n → ∞, N → ∞. ��

5 Numerical results

In this section, to check the efficiency and capability of the method, several examples have
been solved using the proposed method, and the obtained results are presented. For this
purpose, the results obtained from the implementation of the method have been compared
with the exact solutions, and the results obtained by other methods reported in the articles.
Also, the execution times of the method are reported in the tables. In this section, we have
utilized an N-by-1 vector of zeros, denoted as c0 = (0, 0, ..., 0)T , as the initial guess for
all the examples. The results were obtained using MATLAB 2015a on a computer with the
following specifications: Processor: 11th Gen Intel(R) Core(TM) i5-1135G7 @ 2.40GHz
2.42 GHz; memory (RAM): 8.00 GB; and system type: 64-bit operating system, x64-based
processor.

Example 5.1 Consider the following nonlinear problem containing multi-fractional-order
derivatives as the first example Izadi and Cattani (2020); Bhrawy et al. (2015):

∂αu(t) +∂β1u(t)∂β2u(t) + (u(t))2 =
t6 + 6t3−alpha

�(4−α)
+ 36t6−β1−β2

�(4−β1)�(4−β2)
, t ∈ [0, 1], (24)

along with the following initial conditions

u(0) = du

dt
|t=0 = d2u

dt2
|t=0 = 0, (25)

where 2 < α < 3, 0 < β1 < 1 and 1 < β2 < 2. Also, u(t) = t3 is the exact solution to the
above problem. We consider this example in the following five cases:

Case 1: α = 5/2, β1 = 9/10, β2 = 3/2.
Case 2: α = 2.000001, β1 = 0.000009, β2 = 1.000001.
Case 3: α = 2.99, β1 = 0.99, β2 = 1.99.
Case 4: α = 2.75, β1 = 0.75, β2 = 1.75.
Case 5: α = 2.9999, β1 = 0.9999, β2 = 1.9999.

Themaximum absolute errors of the approximate solutions of example 5.1 obtained by the
proposed method are given in Table 1. Also in this table, some comparisons with the results
presented in Izadi and Cattani (2020); Bhrawy et al. (2015) are given. The Fig. 1 shows the
maximum absolute errors versus n with N = 20 and versus N with n = 20 for case 1 in
logarithmic scale. As can be seen, the accuracy of the approximate solutions increases with
increasing N and n.

Example 5.2 As the second example, consider the following nonlinear, multi-fractional-order
equation with variable coefficients:

∂2u(t) +�( 45 )
5
√

t6∂
6
5 u(t) + 11

9
6
√

t∂
1
6 u(t) =

(∂1u(t))2 + 2 + 1
10 t2, 0 ≤ t ≤ 1,

(26)
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Fig. 1 The maximum absolute errors versus n with N = 20(left) and versus N with n = 20(right) for
Example 5.1 case 1

along with the following conditions

u(0) = du

dt
|t=0 = 0. (27)

u(t) = 1+ t2 is the exact solution to the above problem. The maximum absolute errors of the
approximate solutions of example 5.2 obtained by the proposed method are given in Table 2.
As can be seen, the accuracy of the approximate solutions increases with increasing N and
n.

Example 5.3 The following nonlinear, multi-order, non-homogenous fractional differential
equation is considered in the third example Shiralashetti and Deshi (2016); El-Sayed et al.
(2010); Khan et al. (2022):

a∂αu +b∂β2u + c∂β1u + eu3 =
2a

�(4−α)
t3−α + 2b

�(4−β2)
t3−β2 + 2c

�(4−β1)
t3−β1 + e

27 t9, 0 ≤ t ≤ 1,
(28)

along with the conditions

di u

dti
|t=0 = 0, i = 0, 1, ..., �α� − 1, (29)

where 0 < β1 < 1 and 0 < β1 < β2 < �α� − 1. Also, u(t) = t3
3 is the exact solution to the

above problem. We consider this example in the following cases:
Case 1: Shiralashetti and Deshi (2016); El-Sayed et al. (2010) a = e = 1, b = 2, c =

0.5, α = 2, β1 = 0.00196, β2 = 0.07621.
Case 2: Shiralashetti and Deshi (2016); El-Sayed et al. (2010) a = 1, b = 0.1, c =

0.2, e = 0.3, α = 2, β1 = √
5/5, β2 = √

2/2.
Case 3: Shiralashetti and Deshi (2016); Khan et al. (2022) a = b = c = e = 1, α =

2.2, β1 = 0.75, β2 = 1.25.

The maximum absolute errors of the approximate solutions of example 5.3 obtained by
the proposed method are given in Table 3. Also in this table, some comparisons with the
results presented in Shiralashetti and Deshi (2016); El-Sayed et al. (2010); Khan et al. (2022)
are given.

Example 5.4 Consider the following problem with variable coefficients Talib et al. (2022):

∂2u(t) +
√

t7∂
3
2 u(t) + (u(t))2 = 2 + t4 + 4t4√

π
, 0 ≤ t ≤ 1, (30)
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Table 2 The maximum absolute errors using different values of N and n (Example 5.2)

N , n n = 5 n = 10 n = 15 n = 20

N = 5 2.5245 × 10−5 5.0835 × 10−8 7.8558 × 10−11 1.0392 × 10−13

CPU time(s) 0.97 0.985 0.99 1.001

N = 10 1.3666 × 10−5 1.2511 × 10−10 6.6613 × 10−16 4.4409 × 10−16

CPU time(s) 1.02 1.04 1.05 1.08

N = 15 1.3666 × 10−5 1.2237 × 10−10 4.4409 × 10−16 4.4409 × 10−16

CPU time(s) 1.13 1.17 1.16 1.13

N = 20 1.3666 × 10−5 1.2237 × 10−10 4.4409 × 10−16 4.4409 × 10−16

CPU time(s) 1.15 1.18 1.2 1.24

Fig. 2 The maximum absolute errors versus n with N = 20(left) and versus N with n = 20(right) for
Example 5.4

along with the conditions

u(0) = du

dt
|t=0 = 0. (31)

u(t) = t2 is the exact solution to the above problem. The maximum absolute errors of the
approximate solutions of example 5.4 obtained by the proposedmethod using different values
of N and n are given in Table 4. The Fig. 2 shows the maximum absolute errors versus n with
N = 20 and versus N with n = 20 in logarithmic scale. The best-reported results in Talib
et al. (2022) have more than 10−10 absolute error.

Example 5.5 Consider the following nonlinear multi-order fractional differential equation:

∂αu + ∂β2u + ∂β1u + u3 = f (t), 0 ≤ t ≤ 1, (32)

along with the conditions

di u

dti
|t=0 = 0, i = 0, 1, ..., �α� − 1, (33)

where 0 < β1 < 1 and 0 < β1 < β2 < �α� − 1. The function f can be obtained
corresponding to the exact solution u(t) = t3cos(t) and the following cases:

Case 1: α = 2.2, β1 = 0.75, β2 = 1.25.
Case 2: α = 2, β1 = √

5/5, β2 = √
2/2.
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Table 4 The maximum absolute errors using different values of N and n.(Example 5.4)

N , n n = 5 n = 10 n = 15 n = 20

N = 5 1.3096 × 10−4 3.6017 × 10−7 4.6356 × 10−10 2.6956 × 10−13

CPU time(s) 0.98 1.04 1.05 1.07

N = 10 9.7718 × 10−5 6.7023 × 10−9 6.0485 × 10−13 4.4409 × 10−16

CPU time(s) 1.04 1.05 1.06 1.08

N = 15 9.7636 × 10−5 6.6369 × 10−9 1.9496 × 10−13 3.3307 × 10−16

CPU time(s) 1.05 1.06 1.08 1.10

N = 20 9.7636 × 10−5 6.6309 × 10−9 1.8274 × 10−13 3.3307 × 10−16

CPU time(s) 1.07 1.08 1.10 1.12

Table 5 The maximum absolute errors using different values of N and n.(Example 5.5, Case 1)

N , n n = 5 n = 10 n = 15

N = 5 2.1504 × 10−6 2.1504 × 10−6 2.1504 × 10−6

CPU time(s) 0.96 1.02 1.2

N = 10 4.2910 × 10−14 4.2688 × 10−14 4.2910 × 10−14

CPU time(s) 1.0 1.13 1.23

N = 15 5.5511 × 10−16 4.9960 × 10−16 4.4409 × 10−16

CPU time(s) 1.17 1.28 1.31

N = 20 7.7716 × 10−16 4.4409 × 10−16 4.4409 × 10−16

CPU time(s) 1.21 1.32 1.41

Table 6 The maximum absolute errors using different values of N and n.(Example 5.5, Case 2)

N , n n = 5 n = 10 n = 15

N = 5 3.2172 × 10−5 3.2172 × 10−5 3.2172 × 10−5

CPU time(s) 0.95 1.10 1.23

N = 10 1.1080 × 10−12 1.1078 × 10−12 1.1078 × 10−12

CPU time(s) 1.07 1.17 1.28

N = 15 2.1761 × 10−14 2.2204 × 10−16 2.2204 × 10−16

CPU time(s) 1.20 1.23 1.33

N = 20 2.1538 × 10−14 4.4409 × 10−16 2.2204 × 10−16

CPU time(s) 1.22 1.29 1.46

The maximum absolute errors of the approximate solutions of example 5.5 obtained by
the proposed method using different values of N and n are given in Tables 5 and 6.

Example 5.6 Finally, consider the following nonlinear multi-order fractional differential
equation:

∂αu + ∂βu + eu = f (t), 0 ≤ t ≤ 1, (34)

123



An efficient iterative method for multi-order... Page 15 of 17    68 

Table 7 The maximum absolute errors using different values of N and n.(Example 5.6, Case 1)

N , n n = 5 n = 10 n = 15

N = 5 2.1535 × 10−3 2.1534 × 10−3 2.1534 × 10−3

CPU time(s) 1.21 1.33 1.48

N = 10 5.7443 × 10−4 5.7443 × 10−4 5.7443 × 10−4

CPU time(s) 1.47 1.55 1.6

N = 15 2.4975 × 10−4 2.4974 × 10−4 2.4974 × 10−4

CPU time(s) 1.56 1.61 1.66

N = 20 1.7840 × 10−4 1.7833 × 10−4 1.7833 × 10−4

CPU time(s) 1.63 1.67 1.75

Table 8 The maximum absolute errors using different values of N and n.(Example 5.6, Case 2)

N , n n = 5 n = 10 n = 15

N = 5 9.8749 × 10−4 9.8748 × 10−4 9.8748 × 10−4

CPU time(s) 1.39 1.45 1.58

N = 10 2.4885 × 10−4 2.4882 × 10−4 2.4882 × 10−4

CPU time(s) 1.57 1.6 1.68

N = 15 1.11559 × 10−4 1.1158 × 10−4 1.1155 × 10−4

CPU time(s) 1.61 1.69 1.74

N = 20 5.7533 × 10−5 5.7442 × 10−5 5.7438 × 10−5

CPU time(s) 1.7 1.75 1.83

along with the conditions

di u

dti
|t=0 = 0, i = 0, 1, ..., �α� − 1, (35)

where 0 < β < 1 and 0 < β < �α� − 1. The function f can be obtained corresponding to
the exact solution u(t) = tα , which has limited regularity at the beginning of time. Consider
the following cases:

Case 1: α = √
3, β = 0.7.

Case 2: α = 1.85, β = 0.5.
The maximum absolute errors of the approximate solutions of example 5.6 obtained by

the proposed method using different values of N and n are given in Tables 7 and 8. As we
can see, we reached acceptable results even with a small number of collocation points and
iterations. In the numerical results presented in this section, it can be seen that by increasing
the number of collocation points N and iterations n, we can approximate the solutions with
higher precision. This point was predicted in the previous given analytical results.

6 Conclusion

In this work, we have presented a practical, efficient, and vigorous method for solving non-
linear multi-fractional-order differential equations with the help of the integrated Bernoulli
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polynomials. The method is simple in programming and fast in execution. In the presented
method, we use the integrated Bernoulli polynomials combined with the simple iteration
method and the collocation method to approximate the solution. We have given a conver-
gence analysis of the proposed iterative method for nonlinear problems. Several numerical
examples of the implementation of the method are presented to test the method’s efficiency,
power, and versatility. The presented numerical results and comparisons show the accuracy
and efficiency of the proposed method.

Data availability Relevant data can be made available upon reasonable request.
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